Pressure drop of two-phase helium along long cryogenic flexible transfer lines to support a superconducting RF operation at its cryogenic test stand

نویسندگان

  • M H Chang
  • M H Tsai
  • Ch Wang
  • M C Lin
  • F T Chung
  • M S Yeh
  • L H Chang
  • C H Lo
  • T C Yu
  • L J Chen
  • Z K Liu
چکیده

BACKGROUND Establishing a stand-alone cryogenic test stand is of vital importance to ensure the highly reliable and available operation of superconducting radio-frequency module in a synchrotron light source. Operating a cryogenic test stand relies strongly on a capability to deliver two-phase helium along long cryogenic transfer lines. A newly constructed cryogenic test stand with flexible cryogenic transfer lines of length 220 m at National Synchrotron Radiation Research Center is required to support a superconducting radio-frequency module operated at 126.0 kPa with a 40-W dynamic load for a long-term reliability test over weeks. It is designed based on a simple analytical approach with the introduction of a so-called tolerance factor that serves to estimate the pressure drops in transferring a two-phase helium flow with a substantial transfer cryogenic heat load. Tolerance factor 1.5 is adopted based on safety factor 1.5 commonly applied in cryogenic designs to estimate the total mass flow rate of liquid helium demanded. A maximum 60-W dynamic load is verified with experiment measured with heater power 60 W instead after the cryogenic test stand has been installed. RESULTS Aligning the modeled cryogenic accumulated static heat load with the results measured in situ, actual tolerance factor 1.287 is obtained. The feasibility and validity of our simple analytical approach with actual tolerance factor 1.287 have been scrutinized by using five test cases with varied operating conditions. Calculated results show the discrepancies of the pressure drops between the estimated and measured values for both liquid helium and cold gaseous helium transfer lines have an underestimate 0.11 kPa and an overestimate 0.09 kPa, respectively. A discrepancy is foreseen, but remains acceptable for engineering applications from a practical point of view. CONCLUSIONS The simple analytical approach with the introduction of a tolerance factor can provide not only insight into optimizing the choice of each lossy cryogenic piping element of the transfer lines in the design phase but also firm guidance for upgrading the present cryogenic transfer lines for its subsequent application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling and Simulation of the CLS Cryogenic System

This paper presents results pertaining to the numerical modelling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of a cryostat that houses a Radio Frequency (RF) cavity used for boosting the energy of an electron beam. For consistent operation of the RF cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space m...

متن کامل

Modeling and Simulation of the CLS Cryogenic System

This paper presents results pertaining to the numerical modeling of the cryogenic system at the Canadian Light Source. The cryogenic system consists of the cryostat that houses a Radio Frequency (RF) Cavity used for boosting energy of an electron beam. For consistent operation of the RF Cavity, it must be kept immersed in liquid helium at a constant level with the pressure in the gas space main...

متن کامل

Design and construction of a helium purification system using cryogenic adsorption process

One of the most appropriate methods for elimination of trace impurities in helium is cryogenic adsorption process. So, in this study design and construction of cryogenic adsorption helium purification system (3 Nm3.hr-1, 80 bar) carried out using activated carbon as adsorbent at 77K. To evaluation of adsorption dynamics and effect of pressure on elimination of trace impurities, helium purificat...

متن کامل

European Xfel-linac Two-phase He Ii Flow Simulations

The superconducting 1.3-GHz niobium cavities of the XFEL linear accelerator will be cooled in a bath of saturated liquid He II at a temperature of 2 K. The liquid He II supply of the 1.7-km long linac is subdivided in sections of about 150 m length. In these sections a two-phase flow of He II liquid and corresponding vapor occurs. A stable stratified smooth helium flow has to be maintained for ...

متن کامل

The Tesla Cryogenic Accelerator Modules

The Tera-eV Energy Superconducting Linear Accelerator (TESLA), a 32 km long superconducting linear electron/positron collider of 500 GeV (upgradeable to 800 GeV) centre of mass energy, presently in the planning phase at DESY, will consist of about 21000 superconducting RF 9-cell cavities of pure Niobium. Each cavity of about 1 m length has to be cooled in a 2.0 K helium bath and operated at 1.3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016